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all power and processing onboard. All experimental data were gathered in
unaltered office environments with static and dynamic obstacles.

Toto is an example of incremental design methodology. The robot was
programmed in the Behavior Language, based on the subsumption architec-
ture. Its behavior consists of three real-time, reactive layers of competence:
collision-free boundary tracing, landmark detection, and environment learn-
ing and path planning.

Low-level navigation consists of a collection of simple reflex-like rules
which, when acting in parallel, result in an emergent boundary-tracing be-
havior. This behavior is used by the landmark detector which dynamically
extracts features from the environment using the way the robot is moving as
it is moving. The landmarks are used to construct a distributed map of the
environment. The map is represented as a graph of landmarks. The links in
the graph are used to indicate topological adjacency, and are assigned dy-
namically. The structure of the environment is used to bound the outdegree
of the graph nodes resulting in linear graph connectivity.

The graph is distributed in that, like biological neurons, the nodes are
concurrently acting behaviors: all receive sensor and landmark inputs and
communicate by sending messages to their ncarest neighbors. Using the
parallel distributed implementation of the graph the robot can localize in
constant time regardless of the size of the graph.

An adaptation of spreading of activation is used for path finding and
optimization. It is equivalent to parallel graph search which computes both
the topological and physical shortest path in time linear in the size of the
graph. A simple algorithm for local motion decisions is introduced which
utilizes a greedy strategy. The robot uses only local information to execute
a globally optimal path to the goal. The need for replanning is minimized.

The main issues discussed in the thesis are: distributed v. global represen-
tation, qualitative v. quantitative computation qualitative v. quantitative
representation, procedural v. declarative representation, design of emergent
behaviors, dynamic v. static landmark matching, minimizing and simplifying
communication.
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Abstract

-~ This thesis presents a method for robust mobile robot navigation, large
space learning, and path planning, based on a totally distributed architecture.
The described methods were implemented and tested on a physical robot.
The robot, Toto, consists of an omnidirectional base supplied with a ring of
twelve ultrasonic ranging sensors and a compass. It is fully autonomous with
ail power and processing onboard. All experimental data were gathered in
unaltered office environments with static and dynamic obstacles.

Toto is an example of incremental design methodology. The robot was
programmed in the Behavior Language, based on the subsumption architec-
ture. Its behavior consists of three real-time, reactive layers of competence:
collision-free boundary tracing, landmark detection, and environment learn-
ing and path planning.

Low-level navigation consists of a collection of simple reflex-like rules
which, when acting in parallel, result in an emergent boundary-tracing be-
havior. This behavior is used by the landmark detector which dynamically
extracts features from the environment using the way the robot is moving as
it is moving. The landmarks are used to construct a distributed map of the
environment. The map is represented as a graph of .andmarks. The links in
the graph are used to indicate topological adjacency, and are assigned dy-
namically. The structure of the environment is used to bound the outdegree
of the graph ncdes resulting in linear graph connectivity. =~ Z—

The graph is distributed in that, like biological neurons, the nodes are
concurrently acting behaviors: all receive sensor and landmark inputs and
communicate by sending messages to their nearest neighbors. Using the
parallel distributed implementation of the graph the robot can localize in
constant time regardless of the size of the graph.

An adaptation of spreading of activation is used for path finding and
optimization. It is equivalent to parallel graph search which computes both
the topological and physical shortest path in time linear in the size of the
graph. A simple algorithm for local motion decisions is introduced which
utilizes a greedy strategy. The robot uses only local information to execute
a globally optimal path to the goal. The need for replanning is minimized.

The main issues discussed in the thesis are: distributed v. global represen-
tation, qualitative v. quantitative computation qualitative v. quantitative
representation, procedural v. declarative representation, design of emergent




behaviors, dynamic v. static landmark matching, minimizing and simplifying
communication.
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Chapter 1

Introduction

1.1 The Challenge

The work in this thesis was motivated by a classical problem in mobile
robotics: goal-directed navigation. The research presented here provides
an approach to the problem from a perspective different from that which is
well entrenched in the philosophy of the field.

The MIT AI Lab Mobile Robot group has adopted a philosophy which
was once considered radical. It was inspired by Brooks’ introduction of the
subsumption architecture as a method of building layered control systems for
mobile robots. The method embodies a set of fundamental principles about
the way the problem of robot control is handled. These principles address the
issues of reactivity, real-time response, onboard processing, computational
complexity, state maintenance, world modeling, and planning.

The subsumption approach presents an alternative to the classical plan-
ning paradigm in the way it decomposes the problem. Successful subsump-
tion programs are effective combinations of heuristics and adjustments based
on empirical data, rather than applications of a formalized method. Con-
sequently, the subsumption approach has gained respect gradually, based
on empirical support. It was, and continues to be, defended, tested, and
debugged through the process of building physical robots.

The robots built in the group have demonstrated novel solutions to obsta-
cle avoidance, wall following, object tracking [Viola 90] and object following
[Horswill and Brooks 88], room recognition and door-finding [Sarachik
89], six-legged locomotion [Angle 89] [Brooks 89), etc. The robots were
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successfully endowed with abilities to perform a variety of apparently com-
plex tasks such as soda can collection [Connell 89], and people and sound
following [Flynn, Brooks, Wells, and Barrett 89].

The robots implemented by the group tested the feasibility of the sub-
sumption method. Still, the question that remains asked by the critics is
“How far will it scale?” Are there some fundamental limitations of the ap-
proach? What is the class of systems which can be implemented with the
subsumption approach? What kinds of systems are outside that class?

Goal-directed navigation is commonly divided into a group of classical
problems: obstacle avoidance, local navigation, and global path planning.
Path planning is an example of what is considered to be a classical planning
problem, which is possibly not solvable with a distributed, reactive approach
such as that of the subsumption architecture.

Previous to this work, subsumption-based robots relied on random walk,
directed by the stimuli in the environment. They wandered until their sensors
alerted them to a specific condition which triggered task-related response
behavior. The natural next step was to explore possibilities for deterministic
navigation.

Goal-directed navigation necessarily involves the use of a world repre-
sentation, which opens up a philosophical can of worms. Joined with the
representation issue was the need to solve the path planning problem with-
out the conventional notion of a path, or the use of a conventional planner.

1.2 The Response

This thesis describes a mobile robot which has the task of exploring the envi-
ronment, learning its structure, storing it into an appropriate representation,
and using that representation to find and follow shortest paths to arbitrary
known locations.

The system was implemented on a physical robot which uses sonar sensors
and a compass, and was designed to work in unaltered office environments
with static and dynamic obstacles. All data shown in the thesis were obtained
in real runs of the robot in such an environment. The implementation of the
robot software and hardware was a process of mutual constraint satisfaction:
the high-level task (goal-oriented navigation) imposed top-down constraints
and influenced the choice of hardware and software for the robot. At the
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Map-Learning and
Goal-Directed Navigation

landmarks

— Landamark Detection

5eNS0rs edem———ip Boundary Tracing # Sase

Figure 1.1: The three layers of the robot, a typical performance of the
boundary tracing algorithm, and an example graph representing the ex-
plored environment.
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same time, the bottom-up constraints imposed by the physical hardware,
sensors, and actuators (described in chapter 4), influenced the design of the
software and the approach taken in defining the entire task. Designing both
bottom-up and top-down resulted in a fully integrated system in which the
function of each part is well motivated. This helped simplify the debugging
of the system, as well as increased its robustness and reliability. Although
designed for a specific physical system, the methodology employed in the
thesis generalizes to other sensor types and mobile robot architectures.

The work described in this thesis combines the often-segregated problems
in goal-oriented navigation into a single system. The robot performs obstacle
avoidance, local navigation, and path planning, but not through centralized
control of separate modules. Instead, the system performs the task as a result
of the combination of many simple, concurrently acting behaviors.

The robot, Toto, either explores the environment and builds and con-
firms-its environmental map, or purses a goal. The system is designed as a
hierarchy of competence layers. In the lowest layer, simple reflex-like rules
combine into emergent collision-free navigation behavior with the property
of tracing boundaries of objects. The middle layer uses the motion of the
robot while tracing boundaries to dynamically extract landmarks in the en-
vironment. The top layer uses those landmarks to construct a distributed
map of the world and use it to find paths. Figure 1.1 illustrates Toto’s three
layers of competence and chapter 3 describes the underlying philosophy and
motivation.

Each of the competence layers was implemented with a novel approach
in order to introduce and study alterna.ive methods to solving the problems
on all levels of robot control.

In the implementation of the low-level navigation layer the concept of
emergent behavior was used for of developing a robust, collision-free object-
tracing performance. The goal was to design a collection of intuitive, reflex-
like rules which, when combined, result in the desired emergent behavior. A
simple but sufficiently functional sensor characterization was developed in a
form of a guiding heuristic for constructing navigation rules. The rules were
designed to be as simple as possible. They are triggered by mutually exclusive
environmental conditions so as to completely circumvent the need for explicit
arbitration. They were added to the system incrementally, thus keeping its
preformance and analysis tractable. The middle diagram in figure 1.1 shows
a real run demonstrating the object tracing behavior and chapter 5 describes

13




it in detail.

The landmark detection layer uses a dynamic method for procedurally
extracting features from the environment from the way the robot is moving
while it is moving. Instead of selecting landmarks as sonar signatures cor-
responding to particular locations in the world, they were defined as large,
permanent structures such as walls and corridors. These landmark types
were are selected because they could by robustly detected with the available
sensors. The advantage of this approach is in not having to rely on sensor
precision and repeatability, or position control.

Landmark detection corresponds to continuous adjustment of confidence
levels correlated with environmental features. A sufficiently high confiden-e
level for a feature denotes a landmark. The landmarks are defined qualita-
tively, and their representation is implicit in that it results from the proce-
dure a robot executes rather than form a static, declarative model. Another
impertant advantage of dynamic landmarks is their generality. Like the low-
level navigation behaviors, the landmark detection behavior generalizes to
any sensor system providing proximity information, and is independent of
its exact physical properties or configuration. Finally, the landmark detec-
tion layer utilizes the layer below it thus minimizing the amount of added
reasoning. Chapter 6 describes this layer in detail.

Using purely qualitative descriptions of locations and a sparse landmark
set results in ambiguities, so landmark descriptors are augmented with com-
pass bearings and an estimated size. The latter is derived from using the
notion of time as distance, which gives an implicit representation of time in
the system. Assuming constant velocity of the robot, the compass bearing
is integrated to provide a coarse cartesian position. This value is used for
rough position comparisons in map localization. Details of landmark disam-
biguation are given in chapter 8.

The third layer of competence uses the landmarks provided by the layer
below to construct a topological representation of the environment. A va-
riety of graph topologies was explored (see chapter 9) before choosing the
simplest yet powerful topology - a linear list. The list is augmented with
dynamic links resulting in an undirected acyclic graph capable of embedding
any 2D physically feasible topology (see chapter 10). The choice of topology
is important since the graph structure is fixed at compile time. To avoid
implementing a full crossbar between the graph nodes, a static switchboard
mechanism is employed to simulate dynamic links. A method is presented
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for a direct embedding of any world topology in the simple augmented list
topology.

An analysis of the structure of the office environment, combined with the
boundary tracing navigation behavior, yielded a simplifying definition of the
topology of space (see chapter 10). This property allowed for bounding the
outdegree of the nodes in the graph to an empirically determined constant.
The resulting was a graph with linear connectivity.

The distributed nature of the spatial representation presented in thxs the-
sis comes from the implementation of the graph as a collection of concurrently
acting behaviors. Each behavior corresponds to a unique landmark in the
world. It receives inputs from the landmark detector, as well as from the
sensors, and can communicate by sending and receiving messages from its
neighbors in the graph. The robot’s location in the world is indicated by
a single active graph node corresponding to that location. The active node
performs lateral inhibition by spreading deactivation. It also spreads expec-
tation to its neighbor in the direction of travel. Expectation is a method of
preserving minimal context to be used for graph verification and landmark
disambiguation (see chapter 7 for details).

Localization within the graph consists of comparing the broadcast land-
mark to all of the graph nodes. The use of a parallel implementation allows
for localization in constant time regardless of the size of the graph.

The process of environment learning consists of storing the landmarks in
the graph for future use in path planning. The process of constructing a
simple, linear graph, its use and its limitations are discussed in chapter 7.
An augmented, more powerful graph representation is presented in chapter
10. An example of such a graph is shown in the third diagram in figure 1.1.

One of the challenges of the distributed approach was the implementation
of path planning within a decentralized map, devoid of a global view of the
relationship between the start and goal. The solution was implemented with
a variation of spreading of activation [Quillian 69] approach. The goal
node sends a call to its neighbors, which propagate it on through the graph.
When a call reaches a node, its direction specifies the direction in which the
robot should travel next from that landmark. Regardless of where the robot
is located, it knows the optimal direction to pursue toward the goal (see
chapters 8 and 10 for details). This eliminates the need for replanning if the
robot strays from the desired path or becomes lost. The boundary-tracing
algorithm simplifies the motion decision to a binary choice in most cases, at
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times augmented with the compass bearing for decision points with a higher
fanout (see chapter 10). Consequently, the edges in the graph need not carry
any extra information. More importantly, there is no separate reasoning
engine outside the graph; all spatial reasoning used for learning and path
finding is in the graph itself.

Finding shortest paths consists of a parallel graph search. Finding the
shortest topological path is equivalent to a search in a graph with edges of
unit weight. This runs in worst case linear time in the size of the graph.
Augmenting the nodes with an estimated length of each landmark weighs
the edges properly in order to compute the physically shortest path in worst
case linear time.

1.3 Summary and Outline
The —ma.in issues addressed in this thesis include:

e distributed versus global representation,

e qualitative versus quantitative computation

e qualitative versus quantitative representation,
¢ procedural versus declarative representation,
o design of emergent behaviors,

¢ dynamic versus static landmark matching,

¢ minimizing and simplifying communication.

The organization of the thesis proceeds chronologically through the re-
search process, addressing each of the relevant issues as they are encountered.

Chapter 2 reviews related work in robot planning and goal-directed nav-
igation. It describes the classes of existing approaches and gives examples of
each.

Chapter 3 discusses the motivation behind the ideas implemented in this
thesis, as well as the guiding philosophy.

Chapter 4 gives a detailed description of the physical robot which was
used to test all the ideas.
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Chapter 5 describes the navigation algorithms. Chapter 6 presents the
landmark detection scheme. Both contain data from many test runs. Chapter
7 explains the learning algorithms, and tbe initial, simple graph structure.
Chapter 8 gives the goal-oriented navigation scheme within the simple graph
structure, and its performance.

Chapter 9 describes the limitations of the simple graph representations,
and gives an overview of possible alternatives. Chapter 10 describes the
improved, more general graph representation, and its performance.

Chapter 11 is an overview of related biological systems and neurophysio-
logical data. It speculates possible correlations with biology, and presents a
number of questions for future investigations.

Chapter 12 reviews the main results of the thesis, and suggests areas for
future research.
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Chapter 2
A Review of Related Work

The purpose of goal-oriented navigation is to enable a robot to reach some
previously visited or otherwise known point in the world. If the goal is within
the range of the robot’s sensors, the task is usually trivial. Otherwise, the
robot must know its position relative to the goal, in order to select its next
action. Consequently, it needs a representation of the world.

In the classical literature, the task of goal-oriented navigation is usually
presented as a path planning problem. The system is provided with a map
of the environment, which it uses in conjunction with its sensors, to reach a
goal location. Unless the robot’s collision avoidance implementation involves
a reactive scheme, all motions of the robot are preplanned.

Classical path planning has been used in both robot manipulators and
mobile robots. The methods can be divided into two basic groups: local
and global. Local methods, such as potential fields [Khatib 86}, are most
commonly used for fine motion planning employed in manipulator control.
Local methods compute a function using the parameters obtained from the
external and proprioceptive sensors on the robot. The result is a direction
vector for the robot’s next move.

In contrast, global methods are based on searching through free space.
These methods usually employ a cartesian world map containing information
about the known obstacles. The map can be used to explicitly compute free
space areas, such as through the use of configuration space obstacle growth
[Lozano-Pérez 81]. Given some representation of free space, all classical
planning algorithms are variations of search in that space. They rely on
a representation of the world which, for each resolution point in the map,
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determines if the robot is inside or outside an obstacle. The map is divided
into regions based on this information, and a search for a path through the
regions is performed. Such algorithms include Voronoi diagrams [Canny
and Donald 87], visibility graphs [Lozano-Pérez and Wesley 79], quad
trees [Faverjon 84), and generalized cones [Brooks 83].

Given that generating a path is usually reduced to search, the most
difficult problem in goal-oriented navigation is the choice of representation
that will optimize the search process. The following section gives a partial
overview of some approaches to world modeling and path planning.

2.1 HILARE

The work of Rajz Chatila, Georges Giralt, Marc Vaisset, and Jean-Paul Lau-
mond on HILARE is an excellent example of a functioning application of the
classical mobile robot control approach. Acknowledging that the environ-
ment of mobile robots is complex, they stress the importance of constructing
and maintaining an accurate environment model and localizing within it [Gi-
ralt, Chatila, and Vaisset 83).

HILARE is equipped with a number of different sensors: 14 ultrasonic
range sensors, a camera with a laser range-finder, and an infrared beacon-
based triangulation system. Recognizing the difficulty in maintaining differ-
ent types of information within a single world model, their approach involves
three levels of representation [Chatila and Laumond 85).

e On the first level, the perceptual data are translated into a two-dimensional
geometric world model employing polygonal approximations of the per-
ceived obstacles. Gaussian error estimation is used in model matching.

e On the second level, the geometric model is used to deduce the topolog-
ical properties of the environment. Space structuring is performed by
constructing convex polygons corresponding to related obstacle edges
and vertices from the geometric model. These polygons are called
“cells” and their adjacency relationships reflect the topology of the
explored space.

e On the third level, a semantic model can be constructed by object
labeling in the topological graph. The performance of this level was
not explored.
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The advantage of the multi-level world model is that it offers different
types of information which can be accessed by different parts of the robot’s
control system and checked for consistency. The disadvantage of the approach
is the increased complexity of updating the models, as well as the decreased
fault-tolerance.

Chatila and Laumond recognize the position problem as the key issue
in world model maintenance. They suggest three methods for maximizing
the accuracy of this process: absolute position referencing using known bea-
cons, trajectory integration using odometry or inertial guidance, and relative
position referencing using local features in the environment. Calibration is
performed repeatedly in order to minimize cumulative position error and
maintain the necessary accuracy of the models. Updating and correcting the
world models is performed with a set of uncertainty functions applied to the
sensor data.

2.2 Elfes

Another example of multiple levels of world modeling is offered by [Elfes 86).
The levels are viewed as separate mapping dimensions along the abstraction
axis, the geographical axis, and the resolution axis.

o The abstraction axis maps the transition from data-intensive represen-
tations to higher levels of abstraction. This process is illustrated in the
transition from the initial cartesian map to a geometrical representa-
tion. Sonar data from the sensor level map are used at the geometric
level to group occupied cells into unique objects to be approximated
polygonally. Finally, at the symbolic level, topological information is
extracted from the geometric data, and represented explicitly.

o The geographical axis starts with views (locally visible areas), which
are integrated into local maps, which, in turn, combine to form a global
map.

o The resolution axis abstracts the data to a decreasing level of detail in
order to speed up its processing. It allows for “zooming” in and out of
regions of interest.

20




The work provides a clear formalism for grouping tasks involving world
model construction and maintenance. The actual implementation, however,
presupposes precise position and orientation data and claims that cumulative
error only results in a topological distortion of the produced map. It claims
that perfect position control is necessary and can be obtained through dead-
reckoning combined with a stereo matcher for motion estimation.

2.3 Moravec

Moravec employed a simple yet functional representation of space in his path
planning algorithm used on the Stanford Cart [Moravec 83]. The vision
system on the robot modeled objects as clouds of features which were ap-
proximated as uncertainty ellipsoids, and eventually simplified to spheres.
The spheres were projected to circles in a two-dimensional representation.
A path consisted of a series of tangent segments between the circles. To
generate the shortest path to the goal, the circles served as graph nodes in
the path planning search.

In more recent work, Moravec addressed the specific problem of dealing
with uncerta.mty in world model construction and maintenance. [Moravec
and Elfes 85] introduced a grid-mapping method for representing the envi-
ronment based on range sensor data. The entries in each grid cell correspond
to the confidence in the cell’s occupancy based on multiple sonar readings,
as well as single transducer readings gathered from different locations over
time. [Moravec and Cho 89] describes a less ad hoc analysis of the same
approach using probabilistic occupancy maps based on Bayesian statistical
analysis.

The certainty grid based cell occupancy representation is convenient be-
cause of its independence of the sensors used. This feature also makes it
a good representation choice for sensor fusion into a single world model
[Moravec 88). The approach offers a simple but consistent formalism of
uncertainty for world model maintenance. Assuming the path planner has
some method for using the certainty levels, it can be viewed as a basic carte-
sian representation of free space.
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2.4 Drumbheller

Drumbheller addressed the specific problem of map localization based on
matching actual sonar data to an a priori world model [Drumbheller 87].
His approach used an analytical characterization of the sonar sensor in or-
der to estimate measurement error. After error correction and smoothing,
he performed line fitting in order to obtain a line-segment representation of
the robot’s current position. The line segments were matched to a stored
model library through the construction of an interpretation tree [Grimson
and Lozano-Pérez 87].The search space of the matcher was pruned with
the use of local geometric constraints.

This work shows that localization is feasible based on noisy sonar data,
given a reliable world model and a sophisticated matcher. The disadvantage
of the combinatorial blowup could be partially remedied if other sensors are
used to further prune the search space (for instance compass data). The
method does however rely on a static environment and was not tested on a
physical robot.

2.5 Crowley

An approach similar to Drumbeller’s is described in [Crowley 85]). He
proposes a method for updating a world representation by integrating local
information into a global model as the robot is executing a path to the
goal. The global model is previously learned or provided, while the local
information is obtained with a rotating sonar and a touch sensor. Sonar
data are recursively line-fitted to form line segments which are matched to
a model base. The matcher updates the global model by subtracting the
computed average error in the local position estimate from the global model.

As with Drumbheller’s approach, this method depends on a static envi-
ronment and an efficient matching algorithm. An accurate position estimate
is assumed based on wheel shaft encoders. Any errors in this estimate must
be handled by the model matcher. The method was not tested on a physical
robot.
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2.6 Kuipers

[Kuipers 79] describes the TOUR model as a method of simulating some
aspects of the human cognitive map. (The concept of a cognitive map is
described in more detail in chapter 11 of this thesis). Kuipers’ model of the
spatial environment is constructed over time based on a number of egocentric
inputs from the sensors. The model consists of sensory inputs called views
and motions which cause a state change, called actions. The cognitive map
is constructed from the sensorimotor input, which is modeled as a sequence
of alternating views and actions.

Following a previously known route in the TOUR model corresponds
to executing a procedural map. Such a map is a production-like schema
consisting of a description of the goal, the current situation, the action to
perform next, and the result to expect.

The model also uses a topological map. The map has two levels, one
providing a topological network of places and paths between them, the other
supplying the boundary and containment relations of places and paths.

A quantitative description of the environment can be introduced in the
model, through adding metric components to each action, such as distance
to traverse, and angle to turn.

The topological map ideas of the TOUR model were implemented in a
simulation described in [Kuipers and Byun 88] and [Kuipers 87]. A
qualitative graph representation of the environment is used in which nodes
in the graph are locally distinctive features based on geometric criteria. The
nodes are connected by directives such as “travel” and “turn.” Traveling to a
location in the graph consists of searching to localize the starting node, and
following the arcs to the destination, with repeated hiil-climbing whenever
necessary.

The described topological model is appealing in its possible relation to
the notion of the cognitive map. Additionally, it presents a simple method of
representing the environment. The main disadvantage lies in the assumptions
made in the simulation. The sensory system is modeled as a point-source
range sensor with unrealistic characteristics. It would be interesting to test
the method on a real system and evaluate its performance.

23




2.7 Payton

One common disadvantage of the path-generating methods described previ-
ously is that replanning is necessary if the robot strays from the planned
path. Clearly, it is desirable that the robot know the proper direction to
pursue regardless of its position within the map. [Payton 88] suggests an
approach in which plans are represented as action resources. In his method,
the world is represented with a cartesian grid of cells, and a goal is selected
a priori. A full breadth-first search is performed from every possible start
position to the goal based on a cost function utilizing the cell distance to the
goal. The search generates the cost for each grid cell. Finding a path from
any cell to the goal, then, is equivalent to gradient descent along the path of
lowest cost.

The method was successfully tested on the Autonomous Land Vehicle.
Its flexibility relies on the robot’s ability to localize itself accurately. The
limiting factor is the selection of a static goal; whenever the goal changes,
the entire search must be repeated. In that respect the method has the same
disadvantages as planning approaches.

2.8 Arkin

The work described in [Arkin 87] is an excellent example of a hybrid ap-
proach combining global and local classical path planning techniques. The
system is divided into three hierarchical levels: the planner, navigator, and
pilot. The mission planner interprets high-level commands and sets the cri-
teria for the mission. The middle level, the navigator, performs the classical
path planning task of producing a meadow-map-based free space represen-
tation and finding a piece-wise linear path within it. The path is based on
an a priori map. The pilot is responsible for executing each segment of the
path.

The behavior of the robot is determined by the interaction of perceptual
and motor schemas, which are special-purpose computational elements. The
pilot selects a set of appropriate schemas to be executed in a parallel. dis-
tributed manner. Each schema uses the appropriate input from the sensor
and the world model to generate a generalized potential field. Arbitration
between concurrent schemas is resolved through vector addition.
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[Arkin 89] offers a detailed justification of such a hybrid approach to
robot control. He cites neurophysiological evidence supporting this view in
biological systems.

2.9 Connell

[Connell 89] introduced an entirely distributed, behavior-based control sys-
tem for a mobile robot. Herbert navigates in office environments, finds and
picks up soda cans, and returns them to a home location. The work stressed
the issue of minimal representation and limited use of state. It also forced
decentralization through the use of 24 loosely connected processors rather
than a central processing unit.

Herbert does not construct any type of spatial representation, nor keep
a history of the traversed path. In finding the way home, he employs a
simple navigation scheme based on global orientation referencing. The robot
is capable of recognizing doorways, which it uses as landmarks. Doorways
are assumed to be the only choice points on the robot’s path. Herbert relies
on a simple heuristic: if on the way home, go south at each doorway. This
scheme has an appealing simplicity, but depends on a convenient positioning
of the home location, as well as a simple layout of the environment. In spite
of its limitations, the approach is the first attempt at implementing global
navigation in a fully distributed, reactive system.

2.10 Summary

There are many other relevant works, including [Braunegg 90], [Stew-
art 88], [Durrant-Whyte and Leonard 89], etc. This review selected a
few representative examples of the types of approaches being explored. An
overview of the field yields leads to the conclusion that the majority of goal-
directed navigation methods are based on search through some representation
of free space. The selection, construction, and update of this representation
is the crux of the problem.

One of the goals of the work presented in this thesis is to bypass repre-
senting free space explicitly. As an alternative, the method to be presented
deduces the structure of the environment from the robot’s motion. It relies
on the heuristic that motion must by definition be through free space. The
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environment is described as a series of contiguous landmarks which are stored
in a topological, distributed graph.

All actions of the robot are designed as real-time concurrent behaviors.
The method is reactive but performs a classical planning task. The results of
this research demonstrate that a hybrid approach which combines low-level
reactivity with a high-level classical planner, may not be the only effective
solution to goal-directed navigation.
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Chapter 3

Philosophy and Motivation

3.1 The Subsumption Approach

The classical planning approach imposes what can be viewed as a horizontal
or sequential decomposition of the task into processing modules [Brooks
86). The typical sequence is as follows: a snapshot of the world is taken by
the sensors; the sensor data are converted into a format understandable by
the planner; a plan is generated; finally, the plan is translated into actuator
commands. Figure 3.1 illustrates such a task decomposition. This orga-
nization is appealing from the point of view of the software designer as it
appears natural and modular. It is often viewed as the “divide and conquer”
approach to the problem. However, it suffers from several flaws resulting
from its inherently sequential nature. Since the input of each module in the

Sensors Actuators

Figure 3.1: An example of a typical horizontal task decomposition into
a set of serial computational modules.
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- ACtuators

Sensors

Figure 3.2: An example of a vertical task decomposition into a set of
parallel, concurrently-executing computational modules.

process is the output of the previous step, the resulting process in necessarily
serial. Thus it is susceptible to failure due to a malfunction in any module.
Additionally, it imposes a time delay between sensing and action which may
be too long for sufficiently reactive responses required by real world environ-
ments. Finally, the system complexity is built into the sequence and cannot
be easily simplified. Computational complexity is a particular concern in
autonomous robots where all processing must be performed on board.

[Brooks 86] suggests an alternative, vertical approach to decompos-
ing the task in terms of task achieving behaviors. An example of such a
subsumption-based vertical decomposition is shown in figure 3.2. The ap-
proach creates tight couplings between the sensors and actuators on the
robot, separated only by very limited amounts of reasoning in the form of
simple rules. The approach is embodied in the subsumption architecture
which uses finite state machines augmented with timing elements (AFSMs)
to construct simple rules [Brooks and Connell 86]. The AFSMs commu-
nicate through message passing, mutual suppression (one AFSM stops all
inputs to another for a fixed time period), and inhibition (one AFSM stops
all outputs of another for a fixed time period).

Combinations of AFSMs form behaviors, the building blocks of the new
subsumption architecture [Brooks 90]. Behaviors are combined into lev-
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els of competence corresponding to the robot’s abilities. This approach is
more fault-tolerant since failure of any layer does not affect the layers below.
Additionally, this organization allows for modular addition and removal of
behaviors and thus for incremental design and debugging. Most importantly,
it allows for a tight loop between sensing and action which can be performed
quickly and with much less computation.

The subsumption architecture approach was demonstrated on a number of
robots at the MIT Al Lab. Allen used it for obstacle avoidance and wandering
based on sonar data [Brooks 86]. Tom and Jerry were a demonstration
of minimizing the subsumption code complexity and compiling it down to
programmable array logic gates [Connell 87]. Herbert was an excellent
illustration of an apparently complex system (one which navigates in an
unknown environment, picks up soda cans, and takes them home) constructed
with minimal state [Connell 89]. Genghis is an example of incremental
behavior design applied to a six-legged walking robot [Brooks 89]. Squirt
was a challenge in physical miniaturization in implementing intelligence with
minimal hardware and sensor sophistication [Flynn, Brooks, Wells, and
Barrett 89).

A question often posed is: “How is subsumption better than other ap-
proaches?” or more simply: “What does subsumption buy us?” The sub-
sumption approach does not offer any capabilities which cannot be imple-
mented through one of the classical methods of robot control. Instead, it
provides a different approach to the problem. Rather than a recipe for pro-
gramming robots, it is a set of philosophical concepts about robot behavior
design. It stresses the issues of reactivity, concurrency, and real-time control.
The set of principles that subsumption condones can certainly be imple-
mented with any other programming language. The behavior language is
simply a programming tool which attempts to make the implementation of
subsumption-based programs easier, as well as to force a careful consideration
of the relevant issues.

The simplicity of the AFSM-based programming environment is not a
limiting factor on the complexity of the programs it can generate. Conse-
quently, classical planning could be implemented in subsumption, but that
would completely violate the benefits of the concept. The objective is rather
to obtain the functionality of a classical planning task, without the use of
classical planning. Goal-directed navigation is such a task.
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3.2 Choosing a Functional Representation

Goal-directed navigation demands some type of a world representation. A
goal is by definition a special location specified relative to other known loca-
tions in the world. The robot must know its position relative to the goal in
order to decide in which direction to move next, i.e. it must localize within
the world model.

The complexity of the world representation influences the efficiency of
localization. Any localization algorithm must take into account cumulative
position error, sensor error and noise, as well as the incompleteness and
inaccuracy of the representation itself. Additionally, the more detailed and
analytical the representation, the more complicated it will be to keep it
accurate and up to date.

The goal of this thesis is to use a functional representation, one that
contains only the information necessary for the task. A common pitfall of
classical planning approaches is that they rely on known algorithms applied
to traditional representations. For example, they employ cartesian models
for representing two-dimensional space. Although these models are well un-
derstood and are the default choice of most approaches, they are certainly
not the most appropriate for all navigation tasks.

Instead of choosing a familiar representation method and building a nav-
igation system around it, it is crucial to develop the world model after the
task of the robot is well understood. The task should determine the model,
rather than the model constraining the task.

One of the prime motivations behind using the subsumption architecture
is the fact that its framework forces a careful consideration of the issue of
representation. Using the reactive, behavior based model properly demands a
different approach to world modeling. Subsumption-based robots have been
shown to be capable of robustly performing various tasks which require little
representation, such as collision-free navigation, wall-following, even soda-
can collection. One of the main contributions of the subsumption approach
was to show that such tasks required little representation.

The goal of this thesis was to explore a distributed, subsumption-based
implementation for what is considered to be a representation-intensive task.
Map building or spatial learning is a classical example of such a centralized
task. This thesis explores a qualitative, distributed method for spatial mod-
eling as a beginning of introducing representation-intensive tasks into the
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subsumption repertoire.
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Chapter 4
The Robot Toto

4.1 The Simulation Alternative

Simulations are not well suited for generating conclusive test data and results.
While they are quite useful for the proof-of-concept stage of research, when
the feasibility of algorithms needs to be tested, they do not suffice as proof of
algorithm functionality in the real world. A simulation generating successful
data tells us much less than a simulation that fails. If an algorithm fails in
simulation it will certainly not work in the real world, but the opposite is not
necessarily true. A trustworthy simulation requires accurate modeling of the
physical processes involved. For mobile robots this means accurate modeling
of the robot itself as well as its environment.

Modeling physical sensors has proven to be a difficult task. [Kuc and
Siegel 87),(Kuc and Di 86}, and [Letovsky 84] provide analytical meth-
ods for modeling and interpreting sonar data,with varying degrees of com-
plexity. In general, the more physically sound the sensor characterization,
the more complex and computationally intensive it is to simulate it. Not
only do the simulations not run in real-time, but their failure to do so is due
to reasons unrelated to the algorithm they are testing. Very often, the speed
of the simulation is limited by a variety of expensive modeling computation
required in computational geometry, etc. Since writing a realistic simulator
is a difficult task, many compromises are made to simplify it. Unfortunately,
each such compromise acts to decrease the value of the simulation. For in-
stance, many simulations use a simple gaussian to characterize sensory error
and noise. This generates a sensor behavior often entirely different from that
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Figure 4.1: The robot: an omnidirectional three-wheeled base equipped
with a ring of 12 sonars and a compass.

which would be observed in the real world.

In order to avoid both the difficulties and pitfalls of simulation, a physical
robot, Toto, was constructed for testing and debugging all algorithms (Fig-
ure 4.1). All data gathering was done on the physical system, in real time,
and in unaltered office environments.
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4.2 Toto

Toto’s only actuator is a Real World Interface three-wheeled circular robot
base, 12 inches in diameter, 7 inches high. The wheels and the top platform
of the base are connected so as to preserve a forward pointing vector. Since
the robot can turn in place by an arbitrary angle, it can continuously follow
any trajectory with discontinuous velocity. The built-in motor control pro-
cessor in the base accepts rotational and translational position, velocity, and
acceleration commands.

4.2.1 Sensors

Toto has three basic sensors: current sensors on the base motor, a ring of 12
Polaroid ultrasonic ranging sensors, and a flux-gate compass.

The current sensors on the base motor can detect stalling. This informa-
tion is used to prevent Toto from pushing helplessly against various environ-
mental barriers.

The sonar sensors are arranged in a ring and mounted on a cylinder, 8
inches in diameter, centered on the base. With the 30-degree cone of each
transducer, the ring covers the entire 360-degree area around the robot. Ad-
ditionally, the small diameter of the cylinder, placing the transducers within
an inch of each other, eliminates blind zones in the immediate proximity of
the transducers where the cone is not yet widened. The height of the sonar
ring (17 inches from the ground) constrains the types of objects the robot
can detect. Toto can easily detect all structures relevant to its task, such
as walls and furniture. Shelves and any other high-mounted objects remain
undetectable.

4.2.2 Sonar Hardware and Software Drivers

The Polaroid Ranging Sensor can be used to measure the distance to the
nearest point within the range of 0.9 to 35 feet. The sensor consists of
a transducer and a controller board. Upon receiving the signal (VSW) to
activate the transducer, the board returns an acknowledgement of the signal
(XLG), and sends a 300 Volt, 2.5 amp signal to the transducer [Polaroid 87).
The high-voltage pulse in the transducer generates a single-frequence ping.
The transducer acts as both a transmitter and receiver; the necessary settling
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time of the transducer membrane prevents instantaneous pulse detection.
Consequently, the minimum detectable range for the sensor is 0.9 feet. The
first echo it receives triggers a flag (FLG) from the controller board.

The twelve transducers used on the robot are driven by two Polaroid
controller boards. This allows for simultaneous activation of two sonars.
Only the diametrically-opposed transducers are activated to minimize the
probability of echo interference. Sonar travels at the speed of sound (331.4
meters/second) which is the limiting factor of the sampling rate. Each trans-
ducer must wait an interval appropriate to the transducer’s range for the
receipt of the return echo. Due to the physical proximity of the transducers,
the echos of neighboring sonars would easily interfere. This forces serialized
activation once every 200 milliseconds, resulting in the sampling rate of 1.2
seconds for the entire ring.

The sampling rate of the sonar ring is the limiting factor of the robot’s
velocity. While the base can move at 2 meters/second, its safe velocity is
limited to 20 centimeters/second due to the slow data refresh rate.

Sonar data acquisition is performed by a dedicated Hitachi 6301 micro-
processor. The processor generates a trigger signal which is simultaneously
sent to both sonar controller boards, resulting in near-concurrent transducer
activation. The XLG and FLG signals are connected to diffe:ent ports on
the 6301, and signal timing and distance computation are performed in 6301
assembler software. The distances computed from the echo delays are sent
to the main processor via a serial line.

The selection of the transducers to be activated is performed with a
switching mechanism constructed with a set of ten mercury wetted reed re-
lays. The mechanism, shown in appendix A, selects the relays according to a
three-bit input pattern sent by the microprocessor. The hardware aliows for
choosing an arbitrary ordering of transducer activation, but the final system
does not utilize this ability. For Toto’s purposes, it is sufficient to continu-
ally obtain information about the distances in all directions surrounding the
robot. Both the compass and the sonar ring provide continuous data streams
which are sampled when needed. Due to its low data rate, the sonar data
are sampled as quickly as they are available. Each new packet is sent to the
central processor via a 9600 baud serial line.

The final sensor on the robot is a flux-gate compass. The compass is
mounted on top of the robot to isolate it from magnetic interferences from
the rest of Toto’s hardware. It provides an analog signal which is discretized
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with a special-purpose processor board to provide four bits of bearing. The
compass is connected to the central processor via a serial line transmitting
bearing information at 9600 baud.

4.2.3 The Power Supply

The power for the base and all the electronics on board the robot is provided
by rechargeable silver-zinc batteries mounted under the base. The batteries
provide +12 Volts, which are regulated to +5 Volts for the electronics, and
+6 Volts for the sonar controllers. The power supply for the sonar circuitry
is isolated from the rest of the electronics through the use of DC-to-DC
converters. This is necessary due to the sonars’ high current requirements
and voltage spikes.

4.2:4 The Central Processor

Toto’s computational hardware is located inside its cylindrical body. It con-
sists of a half-height VME backplane, mounted horizontally on the base plate.
The bus contains the sonar driver/relay selector board, the main processor
board, and the extension memory/serial port board. All processor boards
were developed at the MIT Mobile Robot Lab. The sonar driver and relay
selector boards were custom developed for Toto. Their component diagrams
and schematics are shown in appendix B. The processor boards can be used
as a sensing subsystem for future robots using sonar.

All of Toto’s processing is performed by a Hitachi CMOS 68000 micro-
processor with 64K bytes each of RAM, ROM, and NVRAM [Ciholas 88].
Several 68000 assembler routines are used to interface the sonar controller
board and the compass with the main processor board, using the extra se-
rial ports provided by the serial port board. The serial ports on the 68000
bus are used for debugging. Figure 4.2 is a schematic showing the physi-
cal organization of the boards and communication lines constituting Toto’s
computational hardware.

A Toshiba liquid crystal display (LCD) is mounted on top of the robot’s
body and used for debugging purposes. Unfortunately, it produces magnetic
fields which interfere with the compass resulting in the need to elevate the
compass 10 inches above the top of the robot’s body. The robot’s effective
height is increased by 28%, but its sonar sensors provide no information
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Figure 4.2: Toto’s computational hardware: the relay switching board
which selects the sonar transducers, the sonar processing board which
performs signal timing, the main processor board executing the robot’s
behaviors, the auxiliary serial port board, the compass board, and the
liquid crystal display used for debugging. The arrow indicate communi-
cation lines between the processor boards, the sensors, and the outputs.

37




| Goa 1-Directed Navigation

1 landmarks

[ Landmark{)etectson |

Sensors »  Boundary Tracing » Base

Figure 4.3: Toto’s three layers of competence.

about the added area. Therefore, the robct may attempt to wander under
high tabletops unaware of its telescoping high-mounted compass, which has a
decapitating effect. This problem can easily be eliminated with an additional
range sensor or a limit switch, but has not presented cause for concern in
experiments up to date.

4.3 The Programming Environment

Toto’s software was written in the Behavior Language, which compiles to the
subsumption architecture language which, in turn, compiles to 68000 assem-
bler code. The Behavior Language is a real-time rule-based parallel program-
ming language [Brooks 89b], an extension of the subsumption architecture
[Brooks 86] [Brooks and Connell 88). In contrast to the subsumption ar-
chitecture language, whicl was programmed with interconnected augmented
finite state machines (AFSMs), the Behavior Language groups AFSMs into
behaviors. Each behavior is a coherent collection of related real-time rules
producing a desired set of responses. A collection of interrelated behaviors
defines a layer of competence of the robot. For example, Toto’s interaction
with the world is governed by three such layers of competence: collision-free
boundary tracing, landmark detection, and map-learning and goal-directed
navigation (figure 4.3).
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Toto’s software is a collection of behaviors which receive inputs from the
sonars and the compass, as well as from other behaviors. Behaviors can
output commands to actuators and other behaviors. Since the base is the
only actuator on the robot, it is controlled by a dedicated low level behavior
[Brooks and Flynn 89]. Any commands to the base are sent to this be-
havior. The rest of the communication on the robot is accomplished through
message passing among behaviors. Explicit suppression and inhibition is min-
imized, as is communication between different layers of competence. Most
communication occurs among the concurrently acting behaviors within a sin-
gle layer of competence.

Minimizing inter-layer communication makes the system modular, and
therefore more generally applicable. Each layer is independent from those
above, and its dependence on the layer- below is simplified as much as possi-
ble. Landmark detection, which is the second layer of Toto’s system, relies on
the first layer, collision-free object-tracing, only to the extent that it assumes
its functior. The second layer receives its inputs directly from the sensors.
The third layer of the system builds maps based on landmark information
received from the second layer. It expects landmarks as input, but is inde-
pendent of the type of system which provides that information. In general,
each layer assumes the functionality of those below, but does not depend on
the way that functionality is realized.

4.4 Summary

In order to avoid the difficulties and pitfalls of simulation, all algorithms were
implemented and tested on a physical robot. Toto is equipped with a 1ing
of twelve ultrasonic ranging sensors and a compass, mounted on a 12-inch
circular, omnidirectional base. All computation is performed onboard by
a CMOS 68000 microprocessor. The robot is programmed in the Behavior
Language.
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Chapter 5

Navigation

5.1 Motivation

The motivation behind the presented approach was to implement an intuitive
navigation method, in contrast to some more analytical approaches, such as
potential fields. While potential fields are a simple way of processing radial
sonar data, they do not map naturally to our understanding of reflexive
behaviors in the biological systems we use as our models.

The goal is to implement navigation as a result of a collection of inter-
acting behaviors. Each behavior consists of a set of rules associating some
conditions in the world with appropriate actions. The rules are designed to
be intuitive, and are of the form: “If approaching an obstacle on the right,
turn to the left.”

A set of important states of the world is selected and defined as a set of
sensory patterns. Some states are defined as the absence of certain emergency
patterns; they generate default actions. Each pattern triggers the appropri-
ate reflex behavior. Since the world provides continual stimuli, some set of
reflexes is activated at all times, resulting in a continuous stream of actions.
The combinations of these actions results in the desired emergent behaviors.

5.2 Sensor Characterization

The navigation algorithm is strongly determined by the sensors available on
the robot. Ultrasonic ranging sensors are an inexpensive means of obtaining
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Figure 5.1: A typical set of radial sonar signatures plotted from real
data. Since the incident angle determines the accuracy of the reading,
near-perpendicular head-on transducers are more accurate than the lat-
eral transducers.

directional distance information. Consequently, they have been used exten-
sively in mobile robot applications. Much literature exists formalizing the
limitations of ultrasonic ranging sensors and suggesting various analytical
approaches to their application [Kuc and Siegel 87] [Kuc and Di 86]
[Letovsky 84).

After analyzing the task for which the sensor is to be used, a single
crucial property of the sonar emerges as its sufficient characterization. The
ultrasonic ranging sensor has high accuracy (near 95%) when the incident
angle of the beam is less than 15 degrees from the normal [Polaroid 87].
At larger angles the sensor often suffers from specular reflection [Flynn 88).
The farther from perpendicular the incident angle, the higher the probability
of specular reflection, resulting in a falsely long reading. Consequently, long
readings have a higher probability of being inaccurate than short readings.
This characteristic leads directly to the guiding heuristic of the functional
sensor characterization: short readings are reliable, while long ones are not.

Figure 5.1 shows a set of three typical radial signatures. It illustrates the
high accuracy in transduvcers near-perpendicular incidence angles, and spec-
ularities in the rest. Figure 5.2 tabulates the signatures varied over the entire
ring. The data are consistent for each direction regardless of the transducer
used. Consistent readings in a particular direction remain invariant for all
transducers, as illustrated in columns 3, 5, 6, 8, 10, 11 and 12 of the table.
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Trans Distance

0 80 300 9s 8S 115 200 25 400 165 80 120 120
1 80 130 95 85 115 208 25 390 165 80 120 120
2 80 120 9s 80 115 208 40 400 165 80 120 120
3 80 440 9s 85 115 20S 45 400 165 80 120 120
4 1785 408 9S 80 115 20S $S 400 178 80 120 120
S 185 290 9s 85 115 208 25 400 17S 80 115 120
6 80 130 95 85 115 20S 30 400 175 80 120 120
? 80 140 9s 8S 115 205 30 400 1125 80 120 120
8 80 290 9S 8S 115 205 30 400 165 80 120 120
9 80 280 9s 85 115 20% 25 400 185 80 120 120
10 80 265 95 80 115 205 25 400 170 80 120 120
11 80 120 9s 80 115 20S 25 400 175 80 120 120

Figure 5.2: A test configuration of the robot in the environment is shown.
The robot is rotated clockwise in place by 30 degrees in order to show
the consistency in performance between the 12 transducers. The table
plots the results. The columns with consistent readings correspond to
transducers with near-perpendicular angles of incidence. More variation
is found in columns representing transducers with oblique angles. The
data show reliable repeatability among different transducers
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Figure 5.3: A schematic of the distance circles defining the three re-
gions around the robot. These regions are used to implement low-level
navigation rules which combine to produce boundary tracing behavior.

In contrast, the readings in column 2 vary as a result of specular effects due
to the transducer’s position relative to the objects.

5.3 The Navigation Rules

Figure 4.3 shows collision-free navigation as the robot’s lowest competence
level. The goal of the navigation behavior is to follow along the boundaries
of the objects in the world while avoiding both dynamic and static obsta-
cles. The avoiding behavior is simply a survival mechanism while boundary
following is the basis of the robot’s perception of the world.

The navigation rules rely on three distance regions or circles around the
robot. In order of increasing radii, those are: the danger zone (1 foot),
the minimum safe distance (2 feet), and the edging distance (2.3 feet, see
figure 5.3. These boundaries utilize the short distance accuracy of the sensors
to keep the robot neither too close nor too far from the objects in the world.
The robot avoids any objects within the danger zone, attempts to stay near
the minimum safe distance of the object it is following, and avoids getting out
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of the edging distance region from the object whose boundary it is tracing.

The choice of these distances is empirical, based on the robot’s velocity
which, in turn, is determined by its sonar sampling rate. Given the sam-
pling rate of 1.2 seconds per full sonar scan, the safe velocity of 20 centime-
ters/second allows Toto to prevent collision with all static and most dynamic
obstacles within 0.3 meters. This defines the danger zone. Any dynamic ob-
stacle which unexpectedly appears in the danger zone and moves toward the
robot at a velocity nearly equal or higher than the robot’s, will cause a col-
lision. An obstacle in the minimum safe distance or farther can be avoided
once detected. Finally, the edging distance is chosen so that the robot does
not veer too far from the object but still allows it a buffer area within which
to move. Since there is no attempt at position control, the algorithm does
not aim to keep the robot at a constant radius away from objects, merely
within a desirable range. That range is defined between the danger zone and
the edging distance, optimally around the minimum safe distance.

As mentioned previously, these threshold radii were selected empirically,
but could also be learned by the robot, through trial and error. While opti-
mized for Toto’s parameters, they can easily be adapted to fit a robot with
a different geometry or velocity constraints.

An important feature of the wandering algorithm is that it involves no
explicit arbitration among the constituent behaviors. Each of the rules is
triggered by discrete and mutually-exclusive sensory characteristics, based
on the three threshold radii around the robot. Consequently, arbitration is
implicit.

The desired object-tracing behavior is the emergent result of the interac-
tion of the following four simple navigational rules [Mataric 89]:

Stroll:

(defbehavior stroll
(cond
((and (<= shortest-sonar danger-zone)
(not stopped))
(stop))

((and (>= front-sonars min-safe-distance)
(not stopped))
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(move forward 3 meters))

((and stopped
(or (> left-distance min-safe-distance)
(> right-distance min-safe-distance)))
(if (> left-distance right-distance)
(turn left 30 degrees)
(turn right 30 degrees)))

(t
(move backward 0.4 meters)))

This behavior sends stop, go, and backup commands to the base, depend-
ing on Toto’s distance from the danger zone. It allows the robot to move
safely forward.

If there is no obstacle in the minimum safe distance range of the front
two sonars, the robot continuously moves forward. It is repeatedly given a
target distance to traverse, which serves like a carrot on a stick. Rather than
getting discrete instructions to move forward to a certain location, the robot
constantly receives “encouragement” to l'eep moving toward a perpetually
escaping goal, which results in smooth, continuous motion.

If any of the transducers in the front detect an obstacle within the danger
zone, the robot stops.

If stopped and within the danger zone of the obstacle, the robot backs up.
This is another defensive behavior which allows the robot to get out of tight
spots and away from unexpected obstacles. Consequently, if the obstacle
is moving (e.g. a person walking close by) the robot will stop briefly. By
the time it receives its next sensory reading the moving obstacle will have
disappeared, and the robot will resume in its original direction. If the obstacle
is still detected, the robot backs up. This strategy allows for minimization
of course changes due to transient obstacles.

Stroll alone provides the robot with the basic safe straight-line motion.
It allows it to move forward and stop and back up whenever necessary.

Avoid:

(defbehavior avoid
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(if (>= minimum-of-the-two-sides min-safe-distance)
(if (and (<= front-left-sonars min-safe-distance)
(<= front-right-sonars min-safe-distance))
(if (< left-side right-side)
(turn right 30 degrees)
(turn left 30 degrees)))

(if (= minimum-of-the-two-sides front-left-sonars)
(turn right 30 degrees)
(turn left 30 degrees))))

If an obstacle is detected within the edging distance of the front sonars,
the robot turns away from it. If it appears on the left, it turns to the
right, and vice versa. If the obstacle is straight ahead, the robot consults
its side sonars to determine the safe direction in which to turn. It turns in
the direction which is not occluded by close obstacles. Appropriate heading
changes are sent to the base behavior. In conjunction with stroll these rules
result in an emergent collision-free wandering behavior. An example of this
behavior is illustrated in figure 5.4. All figures show real data obtained from
physical runs of the robot.

The robot moves freely around the world and is only forced to stop if an
unexpected obstacle appears in its way. Any static object is detected and
avoided by veering. Stopping is a defense-mechanism which is useful with
dynamic obstacles, and rarely gets activated in static environments.

Align:

(defbehavior align

(if (and (<= minimum-of-all-directions edging-distance)
(>= left-side edging-distance)

(>= right-side edging-distance))

(if (= minimum-of-all-directions rear-right-two-sonars)
(turn right 30 degrees)

(turn left 30 degrees))))

This behavior simply but effectively implements “stage fright”: it keeps
the robot from meandering away from the object boundary it is following.
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Figure 5.4: The performance of the combined stroll and avoid behav-
iors. Stroll produces straight-line path segments shown with dashed lines.
Path segments generated by avoid are shown with continuous lines.
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Figure 5.5: The performance of the boundary-tracing behavior as a com-

bination of avoid, stroll and align. These three low-level behaviors allow
the robot to follow any convex boundary.
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If the robot turns away from the object and is getting out of the edging
distance, it turns back towards it. The process of returning to the desired
alignment is incremental. The rule simply states that if the distance behind
the robot is shorter than that in the front, that it should turn by a small
angle in the appropriate direction. This rule will be activated as long as the
robot is not aligned with an object on either of its sides.

As the robot moves away from the wall, its side sonars detect the loss
of a boundary on its right side, and make it turn slightly to the right. The
process is repeated until the robot is aligned to the wall again.

The combination of avoid, stroll, and align allows the robot to follow
convex, straight, and curving boundaries. The schematic of the behavior is
shown in figure 5.5. The robot remains oblivious to doorways, sharp turns,
and T-junctions.

Correct:

(defbehavior correct
(if (> minimum-of-the-front-quadrant edging-distance)
(if (and (>= side-right-first edging-distance)
(<= side-right-second edging-distance))
(turn right 30 degrees))
(if (and (>= side-left-first edging-distance)
(<= side-left-second edging-distance))
(turn left 30 degrees))))

This behavior allows the robot to turn around sharp corners. It keeps a
single bit of history in order to compare a previous sonar reading with the
current one. It uses the values of the two adjacent side sonars on the side
of the robot next to the boundary that is being traced. (The robot decides
which side to turn toward based on which is closer to an object. In a narrow
space it may alternate between the two sides but continues to follow one of
them. See next section for an example of such corridor following.)

If one of the two lateral sonars on the side of the robot next to the
object loses sight of the boundary, the robot compensates by turning in the
direction closer to that boundary. This, too, is an incremental process; the
robot makes a series of small heading changes until the desired heading is
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Figure 5.6: The performance of the complete boundary-tracing behavior.
This behavior emerges as the result of the interaction of avoid, stroll,
align, and correct, which combine to allow the robot to follow any concave
or convex boundary.
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Figure 5.7 A schematic showing the incremental interaction of the
low-level navigation behaviors resulting in emergent boundary tracing.
The addition of each new behavior adds to the overall competence of the
robot.
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Figure 5.8: A schematic illustrating the implicit arbitration among the
low-level navigation behaviors. Since the conditions triggering each of the
four low-level behaviors are mutually exclusive, no explicit arbitration is

needed.
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reached. A universal 30 degree angle of rotation used for all heading changes
sent to the base. The angle is equivalent to the width of the sonar cone.
This choice guarantees a new, non-overlapping sonar cone direction for each
transducer after a single turn. At the same time, the angle is small enough
to avoid overcompensation past the desired range.

With this simple correcting rule the robot is able to follow sharp corners
with arbitrary degree. Figure 5.6 illustrates an example of the robot turning
around a sharp corner. As one of the pair of sonars on the left side loses
sight of the wall, it makes the robot turn to the left. The rule is activated
until both transducers detect the wall within the correct range.

The four behaviors interact to produce a robust boundary-following be-
havior. Figure 5.8 illustrates the interaction of the low-level behaviors result-
ing in the desired boundary-tracing. Figure 5.7 shows the implicit arbitration
among those behaviors.

The use of gradual heading correction is an example of the qualitative
approach of our method. The robot is controlled through the world rather
than from an internal set of desired configurations. Rather than moving
an exact distance or turning by an exact angle, it uses the world as its
feedback to decide both when it needs to change its direction, and by how
much. The approach consists of continuous execution of small, incremental
improvements for which the conditions are met, rather than a sequential
execution of a series of discrete, precise steps.

It is worth noting that, with the exception of the range boundary values,
no metric .~formation is used for navigation. Distances are compared and
their relative sizes are used to make heading change decisions. The only other
metric information is provided by the compass. Its four bits of bearing are
used only as a reference to be compared against a broad range.

5.4 Emergent Properties

The four simple behaviors described in the previous section result in several
useful emergent properties. The most important behavior which results is
that of reliable tracing of the boundaries of the object in the world (Fig-
ure 5.7). This behavior is the basis of both landmark detectirn and goal-
directed navigation algorithms. Figure 5.9 shows a cumulative plot of four
independent runs of the robot in a large room with irregular boundaries con-
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Figure 5.9: A plot of four independent real robot runs manifesting con-
sistent object tracing. The room used for the experiment is the ninth

floor playroom of the MIT Al Lab. The data were gathered by attaching
a marker on the base of the robot and recording its path on the tiled

floor.

53




.

\d
.’......O..O..O.::#“Q“
.o" AN
o X

% 1 4 6 8 W W W W W e N NN B ®
Figure 5.10: A plot of five independent runs showing convergence to the
middle of a corridor on the ninth floor of the MIT Al Lab. The plot
shows three consecutive sections of the same corridor, going left-to-right
and bottom-up. The same technique for data gathering was used as
previously described. The scale shown is in feet.

sisting of walls, chairs, tables, and retired robots. The data show reliable
edge following in all trials.

Corridor following is also an emergent behavior. Figure 5.10 is a plot of
five independent runs showing the robot’s convergence to the middle of the
corricor. The robot was started in different positions in each of the trials.
The convergence to the middle of the corridor is an artifact of its width as
related to the maintained distance thresholds. Any corridor with a width
smaller than twice the edging distance will be followed in the middle. The
shown corridor falls in that category. In a wider corridor the robot will follow
one of the walls.

All data were gathered by attaching a marker to the robot base and
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recording its motion on a tiled floor. The 1'X1’ tiles provided an accurate
grid for plotting the data.

5.5 Summary

The described navigation algorithm demonstrates successful object tracing
as an emergent property of a set of interacting behaviors. Each behavior
in the collection is a combination of simple rules relating specific sensory
patterns with velocity and heading changes. This approach takes advantage
of intuitive pairings between stimuli from the world and actions from the
robot.

An important feature of this navigation algorithm is its independence of
the type of range sensor used. Since the algorithm does not utilize sensor
signatures but rather independent readings, it works with any type of sensor
providing range in the desired direction. For example, the algorithms would
work with a single range sensor as well (sonar or infrared), rotating to provide
data from appropriate directions.

A useful feature of this approach to low-level navigation is the implicit
arbitration among its constituent behaviors. This property keeps their inter-
action tractable which greatly helps in the debugging process, as well as in
the analysis of the robot’s performance. The simplicity of the inter-module
interactions allows for purely incremental design which also keeps the system
tractable since its behavior can be tested by cleanly separating the vari-
ous competence levels. Finally, the dynamic approach resembles intuitive
stimulus-response reflex couplings which most likely control navigation in
simple biological systems.
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Chapter 6

Landmark Detection

6.1 About Landmarks

The concept of a landmark is used extensively in navigational studies ranging
from insects to humans and robots. Although intuitively clear, the concept
is difficult to define. A landmark is any element (object or feature) which
can serve as a point of reference [Presson and Montello 88]. According
to Piaget, a landmark is a spatial primitive, and thus a basic building block
of spatial representations [Piaget and Inhelder 67). Three distinct land-
marks are necessary and sufficient to localize any point in two-dimensional
space [Pick, Montello and Somerville 88]. In addition to localizing
within a single reference frame, landmarks are used as registration marks
for aligning multiple frames. This role is useful in integrating local spatial
information into a global representation.

Most landmark studies rely oi sual cues. However, the notion of a
landmark generalizes to any reference feature, as perceived by the available
sensors. Auditory cues are ubiquitous as temporal landmarks (e.g. the school
bell). Olfactory cues are used extensively by insects and animals, and play
a prominent role in human memory (Gould 82].

The use of landmarks by the blind is a good example of non-visual cue use
for spatial orientation. The stimuli used include aural, tactile, and olfactory
information. The blind tend to build lists of landmarks as paths between
known locations in the world. A typical list is of the form: “Go straight
until A, then turn left, keep going until reaching B, then turn right...” These
paths are essentially topological. They rely on some method of recognizing
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the landmarks in geographic space, and on the properties of the egocentric
reference frame (front-back, left-right). Studies also show that people con-
fronted with new, unknown environments (such as new cities), prefer the
qualitative list of directions for reaching a goal, rather than a geometric map
[Kender and Leff 89).

Since the notion of a landmark is so vague, the process of landmark selec-
tion remains difficult. Psychological literature cites examples of landmarks
selected on the basis of their distinctiveness value, or the saliency within the
given context [Anooshian 88].

In humans, the abundance of available sensory information makes the
analysis of the selection and representation of landmarks difficult. In robotics,
the problem of landmark selection is simplified by the limitations of the
sensors. A landmark should be a feature or location which is robustly and
reliably recognizable by the sensors. Consequently, a landmark is an extreme
point in sensor space. This is the basis of the approach proposed by [Kuipers
87].

The intuitive notion that larger objects serve as better landmarks for peo-
ple has been confirmed in experiments [Lockman 88]. The rule especially
applies to learning large space, which is one of the thrusts of this research.

A natural bias is to select landmarks which are meaningful to the robot de-
signer. Unfortunately, those correspond to salient features in human sensory
and semantic space, and usually not that of the robot. Often, much effort
is spent in designing sensors to detect such features. This thesis presents an
orthogonal approach; it utilizes the features in the environment which are
easily and reliably detectable by the robot’s sensors as a basis for defining
landmarks. It is not surprising that those landmarks seem unusual to human
observers. They correspond to what is usually thought of as connections be-
tween landmarks in the world, rather than actual landmarks. It is interesting
is that they serve as effective landmarks as well. This stresses the difficulty
and variability, as well as context dependence, of landmark selection.

6.2 Dynamic Versus Static Landmark Match-
ing

A common approach to landmark detection is matching a received sensory
pattern or signature to the stored model of a landmark. This approach
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is commonly used with sonar data. For instance, [Drumheller 87] used
real time sonar data for static localization, using a model-based matching
algorithm (see chapter 2). [Kuipers 87] modeled sonar as a point-source
sensor. He used a hill climbing algorithm for matching such idealized sensor
data in simulation. While the simplicity of the approach is appealing and may
work in simulation, using a physical sonar introduces a variety of difficulties
which may make this model unrealistic.

Given the characteristics of the sensor (see chapter 5), it is improbable
that identical sonar signatures will be generated in different trials on a phys-
ical robot. Additionally, static matching schemes often rely on positional
control, whose accuracy is difficult to maintain due to wheel slipping, fric-
tion, and other factors resulting in cumulative errors. Consequently, static
approaches to landmark recognition require a sophisticated matching pro-
cess. The matcher must take into account sensor error and noise, as well as
positional inaccuracy.

In contrast to static matching, the algorithm described here defines and
detects landmarks dynamically. The constant motion of the robot is utilized,
in conjunction with its boundary-following behavior. The robot monitors its
proprioceptors, and communicates with itself through the world [Connell
88). Rather than taking a snapshot of the world and executing a series of
planned actions, it continuously senses and acts incrementally.

We can view this dynamic approach as utilizing a procedural represen-
tation of landmarks as compared to declarative models usually used. The
advantage of the dynamic approach is its generality: it is independent of
the specific sensory system on the robot. It will work with any sensor which
provides proximity data regardless of its exact modality or physical structure.

Another advantage of dynamic landmark detection is its computational
simplicity. It does not require an analytical model of the sensors, or a so-
phisticated matcher for recognizing the landmarks.

6.3 The Dynamic Landmark-Matching Al-
gorithm

Toto’s navigation algorithm (see chapter 4) produces a path around the
boundaries of objects. The landmark detection algorithm uses this path
dynamically to extract environmental features from the way the robot is
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moving while it is moving. The approach utilizes the robot’s motion to per-
form dynamic landmark detection.

One of the most important stages of robot design is matching sensors to
the task. The primary concern in designing a landmark detecting algorithm
is the selection of landmarks which can be robustly and repeatedly detected
with the given sensors. This led to the choice of walls and corridors as fre-
quent landmarks in the office building environment. They are large enough
to be reliably detected dynamically, as well as static and unlikely to disap-
pear during the robot’s traversal of the environment. In contrast to detailed
environmental mapping {Chatila and Laumond 85) [Moravec 88), the
purpose of this robot is to explore and learn the large-scale structure of its
environment.

The patterns traced by the robot correspond to the basic set of environ-
mental features or detectable landmarks: walls, corridors, and messy areas.
These are detectable through continuous monitoring of the compass and the
lateral sonar transducers. The following simple heuristics are sufficient:

o If the robot is moving in the same direction for a while, it is probably
following a straight boundary.

o If the robot is following a boundary, one (or both) of its side sonars will
be receiving consistent returns within the edging distance threshold.

o If the robot is moving in a nearly straight line, its compass will remain
constant.

These heuristics translate directly into simple rules for feature detection.
A behavior is dedicated to constant monitoring of the compass direction
for consistency. Since the data rate of the sonar is low, gathering multiple
readings would be overly time consuming. Instead, the algorithm utilizes all
of the gathered data and filters out the bad data through dynamic averaging.
Consistent compass readings result in increased compass confidence. The
sonar returns of the two sides of the robot are monitored simultaneously. If
either is consistently within the edging distance, its confidence is increased
as well. Finally, if the confidence measures fall below a minimum threshold,
the confidence counters are reset.

Whenever sufficient compass confidence has accrued, left or right side
consistency is checked. If both have grown simultaneously, a corridor is
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detected, otherwise it is a wall. It is necessary to couple the compass data
with the sonar instances. A consistent compass bearing can mean that the
robot is moving in a straight line through the middle of a room, as it does if is
started away from any objects in search of a boundary to trace. Conversely,
a consistent object-following behavior without a constant compass bearing
is merely detecting irregular boundaries. Detection of irregular, messy areas
as landmarks is useful as it provides a link between the “real” landmarks.
Any traversed path can be represented as a continuous sequence of the given
landmark types. Path continuity is an important quality which is utilized in
goal-directed navigation. While they are not necessarily a useful destination
point, the messy area landmarks ensure that the robot’s list of consecutive
landmarks is continuous in space. This, in turn, allows it to optimize paths
based on physical rather than only topological distance (see chapter 8).

In this scheme, a landmark corresponds to a hypothesis which has gained
a high level of confidence. Toto forms hypotheses based on simple rules which
rely on the side sonar readings and the compass values.

Consistent sensor readings appropriately increase and decrease the land-
mark confidence levels. When 2 confidence level for a landmark grows enough
to reach a preset threshold, a landmark is acknowledged. The threshold lev-
els were empirically chosen to be 10 for a wall, 8 for a corridor, and 15 for a
messy area (lack of landmark). The corridor threshold is carefully chosen to
be lower than the wall threshold in order to minimize the number of instances
in which the confidence into one of the walls builds up much faster than the
confidence in the other. Finally, the threshold for a messy area is selected to
be comparatively high to minimize possibly overlooked walls and corridors.
The confidence levels for individual types of landmarks are maintained in
parallel, with independently active monitors.

Assuming constant velocity (20 centimeters/sec) and the data update
rate of 0.83Hz (a full sonar ring every 1.2 seconds), we can approximate the
distance required for each of the landmarks to be detected. Specifically, the
minimum distance required for a wall is 2.4 meters, for a corridor 1.9 meters,
and for a “junk” landmark 3.6 meters. Given frequent spurious errors in
the sensor data, the confidence counter is often decremented to compensate,
which results in an actual longer distance threshold for each landmark.
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6.4 Performance

The robustness of the dynamic landmark detection scheme lies in its qualita-
tive nature. Feature detection does not rely on exact positioning of the robot,
nor on the accuracy of its sensors. The algorithm uses a running average to
eliminate spurious errors due to sonar specularities or inconsistent compass
shifts. It also allows for averaging out quick dynamic obstacles, such as peo-
ple walking by; they appear as transient noise. Spurious errors have a very
small effect since they only temporarily decrease the related confidence mea-
surement, but do not reset it completely. The landmark detector does not
expect either the world or the sensors to be perfect. The robot can recognize
a landmark regardless of where along its length it may be. Additionally, it
can recognize a landmark in spite of noise or changes in the smaller features
in the environment. For instance, adding small and medium-sized furniture
or clutter along a wall will not prevent Toto from recognizing it. Landmarks
are detected with repeatable accuracy independent of the robot’s starting
position or the exact path followed.

Figures 6.1 and 6.2 illustrate Toto’s landmark detection performance in
a room and a corridor, respectively. Landmark labels (LW for left wall, RW
for right wall, C for corridor, and J for junk or messy area) with compass
bearings (0 through 15) indicate the location where each of the landmarks
was detected. In the room environment the algorithm manifests a desirable
clustering of landmarks and a consistency of the detected compass directions
although the robot is not started at identical locations nor does it follow the
same path in each of the trials. In the corridor the robot reliably detects
the type of the landmark and its compass bearing, but the positions of exact
detection vary over different trials. The mapping algorithms (see chapter 7)
is designed to take advantage of landmark reliability and does not rely on its
exact position of detection.

The robustness and reliability of the robot’s lowest level boundary tracing
behaviors allow for this simple, dynamic landmark detecting scheme which
circumvents the need for explicit landmark models and matching algorithms.
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Figure 6.1: Toto’s landmark detection performance over three trials in the
same room. Each landmark consists of the type (e.g. RW = right wall)
and the associated compass bearing. The indicated landmark locations
correspond to the exact position of detection~The data show landmark
clustering in spite of the lack of position control.
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Figure 6.2: An example of Toto’s landmark detection performance in
four independent trials in a corridor. Even without position control,
some clustering of landmarks is observed.
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Chapter 7

Environment Learning

7.1 The Goals

In thic project, the robot’s task is to learn the large-space structure of the
environment by recording its permanent features. The approach differs fun-
damentally from building a detailed map of the world which includes features
of smaller size and higher probability of impermanence. Instead, the objec-
tive is to design both space-learning and goal-directed navigation algorithms
which allow the robot to get within the sensing range of the goal. Its reper-
toire of behaviors can then be augmented with special purpose fine motion
planning appropriate for the specific task and sensors used. This approach
of large-scale navigation for approaching the goal with fine corrections when
the goal can be sensed is also used by bees, homing pigeons, and even beach
fleas [Schone 84].

In order to build a map of the environment, the robot must store the
detected landmarks in some type of a representation which can be used for
goal-directed navigation. Both the collision-free object-tracing and landmark
detection algorithms described so far are qualitative. In the same vein, and
for the same benefits, the map representation of the environment should
be qualitative as well. Graphs provide a natural means for representing
qualitative, topological relations, in contrast to metric-based, cartesian maps.
Their structure implicitly contains adjacency properties between the nodes,
information necessary for goal-directed navigation. As such, graphs have
been used by [Kuipers 79], [Brooks 85], [Chatila and Laumond 85,
[Elfes 86], etc. All of these applications use graphs as centralized data
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Figure 7.1: A schematic showing the communication links between the
behaviors in the system. Each node receives expectation, deactivation
and call inputs from both of its neighbors. Each node sends out bilateral
expectation and call messages, and one-directional wakeup messages.

structures. In contrast, the approach presented in this thesis, utilizes fully
distributed graphs.

Instead of a global data structure, the decentralized nature of the sub-
sumption architecture itself is used to implement a distributed graph. Brooks
suggested the use of behaviors (collections of AFSMs) as nodes in the graph.
Equivalent to any other of the robot’s behaviors (such as obstacle avoidance
and object-tracing behaviors), each node is an independent process in the
graph, which responds to certain inputs and generates appropriate outputs.
Each node is a behavior which receives input from the landmark detector,
the sonars, the compass, and the neighboring nodes in the graph. It out-
puts messages to its neighbors, as well as occasional directives to the base.
Figure 7.1 illustrates the communication links between the behaviors in the
system.

The behavior-based distributed world representation is a natural exten-
sion of the subsumption architecture. In contrast to global world models,
the graph itself is not accessible as a whole, since each of its nodes is an
independently acting behavior.

Due to the nature of the Behavior Language compiler, the topology of the
graph must be statically determined at compile time. It is important that
such a static topology be chosen properly so as to be as flexible as possible in
order to accommodate the topology of the physical world (see chapter 9 for
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Landmark
Detector

Compass Sonars

Figure 7.2: The structure of the graph connectivity. The landmark de-
tector broadcasts the landmark to all nodes in the list. Each node has
access to sonar and compass data.

a detailed discussion). The robot is initially given an underlying graph with
“empty” nodes which are “filled” sequentially, as it explores its environment.
The nodes are interconnected by message wires which allow communication
between nearest neighbors in the graph. The graph connectivity is a space
consideration. Arbitrary dynamically assignable connections between nodes
can escalate to O(n?) connectivity and thus do not scale well. The presented
approach employs only a few global broadcasting connections, in addition
to nearest-neighbor connections between adjacent graph nodes (figure 7.2).
The total number of connections is linear in the size of the graph.

The chosen graph topology should be capable of accommodating the space
structure encountered in the physical world. Since the environment is not
known a priori, the graph topology must be capable of embedding any pos-
sible physical organization. The first underlying graph topology which was
explored was a linear list. It was chosen for its simplicity, but showed sur-
prising functionality.
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7.2 Spatial Learning Through Graph Con-
struction

As the robot explores its environment, the landmarks it detects are broadcast
to all the nodes in the graph. Initially, the graph is empty, and the first
detected landmark is automatically stored in the first node. This node is
special in that it knows it is the first. This is necessary since there is no
global data structure which controls node allocation. Instead, each node
“wakes up” its next unallocated neighbor in the list. The newly allocated
node corresponds to the robot’s current position in the graph. The qualitative
descriptor of the landmark is saved, consisting of its type (left wall, right wall,
corridor) and its associated averaged compass bearing. The newly added
node receives a wake up call, and is activated.

Whenever a landmark is detected it is broadcast to all the nodes in the
graph. When a node receives a landmark it compares it to itself. The match-
ing is a simple process of comparing the landmark type and the compass
bearing. Its simplicity is a result of the low-level navigation algorithm which
guarantees that the robot will follow the outside edges of objects. This be-
havior generates only two possible directions along a single object boundary.
The matching takes into account the duality of each landmark depending on
the compass direction (e.g. a left wall going north is equivalent to a right wall
going south). Since all graph nodes are matched in parallel, map localization
effectively takes constant time, regardless of the size of the graph.

Given the sparse landmark set, more than one landmark may have the
same label (type and bearing). The next section introduces a method for
using context to disambiguate between similar landmarks in order to produce
only a single match in every case.

After a landmark is broadcast if no graph node reports a match, the
landmark is assumed to be new, and is to be added to the graph. This is ac-
complished by assigning the new landmark to the graph node adjacent to the
currently active position. Thus the topological adjacency of the landmarks
in the world is reflected in the graph. The active node sends a wake-up
call to the neighbor who, upon receiving it becomes activated and spreads
deactivation to its predecessor.

Figure 7.3 shows a sample environment with the indicated positions of
landmark detection. The trace in figure 7.4 illustrates the process of path
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Figure 7.3: The large-space version of the ninth-floor area of the Lab. The
landmark detection areas are marked with landmark types and compass
bearings. The assumed exploration direction is arbitrarily chosen to be
clockwise.
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0 woke-up

corridor at bearing
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Figure 7.4: A trace of node allocation as the robot explores the shown
environment. The left-hand column shows the node number, the right
shows its activity.

start

Figure 7.5: The distributed graph or map resulting from the robot’s
exploration of the shown environment.
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learning through node allocation. The resulting graph is shown in figure 7.5.

A new node is allocated only when the landmark label changes. A physi-
cally long landmark will be detected repeatedly along its length, but will be
prepresented by a single node in the graph. The advantages of tkis choice,
along with possible alternatives, are discussed in the next chapter.

It is important to note that there is no guarantee that the active node is
the last one in the graph having an unallocated neighbor on its right in the
list. This situation requires a graph with higher than linear connectivity. A
more flexible representation capable of handling any 2D physical topology is
discussed in chapter 10.

Another more complicated scenario is one in which the path loops back
on itself. Proceeding in either of the possible directions would lead the robot
to another already discovered landmark. With a fixed linear-list topology,
this forces a termination of the particular path. This is an inherent limitation
of the topology. This issue is addressed in chapter 9, in which an augmented
graph topology is described.

The process of learning unique landmarks is limited by the size of the
graph. Once all of the nodes are allocated, the robot is forced to return to
known territory.

An alternative approach to learning the environment is to supply the
robot with a preconstructed graph representing the reachable world, or some
portion thereof. The robot can localize within such a graph, verify it, and
augment it through independent exploration. Many path planning systems
rely on an a priori world map, while others employ a wandering, exploratory
phase allowing the robot to construct a map based on its sensory information.
While such a map is necessarily less accurate, it may provide a higher model
matching probability since it is based on the input from the robot’s own sen-
sors. The difference between the two approaches may give rise to a somewhat
different set of design concerns (e.g. accuracy in model construction versus
the accuracy of localization), but they are fundamentally equivalent.

7.2.1 Using Expectation

Whenever a node in the graph is active, it spreads ezpectation to its neighbor
in the direction of travel, thus alerting it to expect potentially upcoming acti-
vation. Whenever a landmark is matched to a node, and that node is expect-
ing, the match is considered accurate. In a given environment (figure 7.6),
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Figure 7.6: The ninth floor test environment with a blocked corrido:.
The areas of landmark detection are indicated, as is the position of the
robot.

expectation

Figure 7.7: The graph of the explored environment showing the active
(shaded) node corresponding to the robot’s current location. The arrow
indicated the direction of propagated expectation, based on the robot’s
current direction of travel along the landmark path.
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without expectation the robot may match either of its adjacent landmarks
(figure 7.7). Matching the correct one of those confirms the robot’s position
hypothesis as well as its confidence in the map’s accuracy.

If a match occurs without expectation, it could either be false, or an in-
dication that the path contains a loop. A simple linear list cannot handle
loops in the graph. A more powerful graph representation is described in
chapter 10. The algorithm deals implicitly with false positive and false nega-
tive matches by attempting to maximize the accuracy of each match through
the use of context (expectation) as well as a rough position estimate.

7.2.2 Using Position Estimation

Given the small number of landmark types, it is necessary to employ an ad-
ditional method of landmark disambiguation. In general, no totally position-
independent method will be able to distinguish between two landmarks of the
same qualitative type and compass bearing. Figure 7.9 shows an example of
such a scenario. Brooks suggested obtaining a very coarse position estimate
by integrating the compass bearing over time [Mataric and Brooks 90].
This estimate assumes constant velocity of the robot. Although extremely
rough, it helps in disambiguating otherwise identical landmarks. Figure 7.8
shows the variation in the position estimate as the robot moves through the
environment. The landmark matcher takes into account cumulative error, as
well as the length of the particular landmark in setting the error margins.
The method relies on the heuristic that two landmarks of the same type are
unlikely to appear in close physical proximity; for example, two qualitatively
identical left walls must be separated by a detectable space.

If a landmark matches, but is not expecting, its estimated position is
compared to the robot’s current rough position estimate. If the estimates
match within some error margin, the path is assumed to have looped.

Finally, if the position estimate does not indicate a match, the match is
assumed to be an error, and the robot proceeds with its exploration without
updating its position.

Figure 7.10 shows an example of an ambiguous environment. Figure 7.11
is a trace of the code execution without the use of position referencing. The
robot fails to recognize a previously known location due to the lack of expec-
tation. Instead, it adds a new node to the graph, as shown in figure 7.12.

Figure 7.13 is a trace of the execution utilizing position information. Al-
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Figure 7.8: The position data shown here illustrate the roughness of
the position estimate, and its cumulative error over time. The data were
gathered by running the robot continuously through the environment and
sampling the position estimate at the marked location. The (x,y) coor-
dinate pairs are indicated in 0.5-meter units, but are only used relative
to each other, rather than as absolute distances.
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Figure 7.9: Given the small number of distinct landmark types, many
locations appear indistinguishable, and necessitate the use of context or
history, as well as position, in order to disambiguate. In the environments
shown above, the robot must use the position estimate in order to localize

correctly.
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Figure 7.10: In the environment shown above, the robot must disam-
biguate between similar landmarks. The path it takes eventually leads it
to the third corridor, marked as the end location, which appears identi-
cal to the second. Without the use of position information, the context
alone results in an incorrect localization.
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node#: message:

corridor at bearing = 12
1 activated
0 deactivated

corridor at bearing = 8
2 activated
1 deactivated

Figure 7.11: The execution trace shows the robot localizing incorrectly
based only on contextual information. Without position information, it

cannot distinguish between the previously learned and newly discovered
landmark.

° - @

expectation

Figure 7.12: The graph showing illustrates how contextual information
in the form of expectation leads the robot to localize incorrectly. The

expecting node happens to be identical to the newly discovered landmack,
so the robot cannot distinguish them.
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node#: message:

corridor at bearing = 12

1l activated
0 deactivated
4 woke up
corridor at bearing = 8
1l deactivated
4 activated

Figure 7.13: Execution trace illustrating correct localization after po-
sition information is taken into account. Although the two landmarks
still appear identical, and the context clue is incorrect, the position es-
timate differentiates them. The robot recognizes the location as a new
landmark, and adds it to the graph.

Figure 7.14: After using the position information to differentiate between
two otherwise identical landmarks, the robot adds the new node to the
graph.
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though there is no expectation, the position match is close enough, and the
robot localizes properly. Figure 7.14 shows the updated location of activa-
tion.

7.3 Summary

The described environment-learning algorithm uses a qualitative, topologi-
cal representation of the world. It stores detected landmarks into a graph
consisting of concurrently active behaviors as nodes. Topologically adjacent
nodes in the graph communicate through message passing, which allows for
spreading activation and deactivation through the graph. The landmark cor-
responding to the robot’s current position is active and laterally inhibits the
others by propagating deactivation to its predecessor.

Upon discovery, landmarks are broadcast to all nodes in the list in par-
allel. Concurrently active locations allow for graph localization in constant
time. The notion of expectation and a rough position estimate are used
for landmark disambiguation in order to facilitate localization. If no node
matches, the location is assumed to be new. The currently active node sends
a wake-up call to its neighbor which becomes activated and associated with
the newly discovered landmark.

The orthogonality of the office environment structure, coupled with the
chosen landmark set proved empirically robust. The incremental method
for landmark detection using dynamic averaging limited large sensory errors
which would have caused false positive landmark matches. The matching
accuracy was further enhanced through the use of expectation and the rough
position estimate. False negatives occurred if the robot failed to recognize a
landmark as it was exploring. If the length of the landmark was sufficiently
large, most matches eventually occurred. Otherwise, the robot failed to up-
date its position estimate. While it never matched two landmarks incorrectly,
it occasionally failed to detect a landmark. Such an occurrence during a dis-
covery phase resulted in a sparser map which would later get augmented if the
robot was allowed repeated runs through the same environment. Skipping
a landmark on the way to the goal did not affect the goal-finding behavior.
This resulted from the design of the path finding algorithm, described in the
next section.
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Chapter 8

Goal-Oriented Navigation

The existence of the world model allows the robot to return to an arbitrary
landmark in the known world. On Toto, the goal landmarks is selected
by pressing a combination of three buttons on the iop of the robot. The
buttons allow for selecting a particular landmark type (e.g. the nearest wall
or corridor), the first discovered landmark (the first node in the graph), or
an arbitrary landmark in the graph.

Since the graph structure is distributed, there is no notion of a global
path to the goal. Global path planning in a decentralized graph must be
accomplished with only local communication. The approach described here
is based on the same process of message passing as that used for all commu-
nication within the graph [Mataric 90].

The algorithm is based on the concept of spreading of activation as used
in semantic nets [Quillian 69)]. In a semantic network, finding the relation
between two concepts is accomplished by spreading activation from the two
nodes in the network, and waiting for the two waves to intersect. This is
equivalent to graph search.

In the algorithm used for locating a path in the spatial network, activa-
tion is spread in one direction only, starting from the goal. It propagates
through the graph and eventually reaches the node corresponding to the
robot’s current position.

The node in the graph matching the goal landmark location repeatedly
sends out a call which is propagated until it reaches the currently active node.
The direction from which the incoming call arrives is the desired direction
of motion. Pursuing it will lead the robot toward the next landmark on the
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goal bearing = 4

Figure 8.1: The lightly-shaded node indicates the robot’s current po-
sition. The darkly-shaded node is the goal. The arrow indicates the
robot’s direction of travel along the landmark path. The shown graph is
an example of a position which forces the robot to change direction in
order to pursue the path to the goal node.

goal bearing = 12

Figure 8.2: The lightly-shaded node indicates the robot’s current po-
sition. The darkly-shaded node is the goal. The arrow indicates the
robot’s direction of travel along the landmark path. The shown graph
is an example of a position from which the robot is already heading the
proper direction in order to reach the goal node.
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path to the goal.

Due to the design of the object-tracing behavior, the robot is always
moving in one of two possible directions along the list of landmarks: left-
to-right, or right-to-left. Each new landmark is added to the end of list,
so left-to-right is the direction of initial exploration, by definiticn. This
ordering implicitly preserves the direction of original exploration. If the
robot is moving in the exploration direction, and it receives a call from the
left, it must turn around, as illustrated in figure 8.1. A call from the right
requires no turn.

Analogously, if the robot is moving right-to-left, and it receives a call
from the right, it must turn around. No turn is required from a left call
(figure 8.2).

Since the goal node emits the call repeatedly, the robot receives it at
each of the landmarks it reaches. Consequently, it can chose the proper
direction to pursue from any point in the graph. If it veers away from the
path and arrives at an arbitrary node, it will resume its mission from that
point in the graph, until it reaches the goal. When the currently recognized
landmark matches the goal landmark, the goal node is reached and the call
is terminated.

8.1 Finding the Shortest Topological Path

Once a node is selected as a destination, it begins to send out a call to both
of its neighbors. The call is sent out continuously until the robot reaches
the goal. Whenever a call is received by an active node in the graph, it is
propagated on to its neighbors in the appropriate direction. If a call was
received from the left it is passed on to the right, and vice versa. Eventually,
the call must reach the currently active node in the graph.

Since there is no global data structure, there is also no global notion of
a continucus path. Instead, the robot knows the locally correct directic 1
to pursue. Since the destination emits its call continuously, all locations 1n
the graph receive it and are provided with the correct direction toward the
current goal. In this scheme there is no need for replanning if the robot strays
off the desired path or becomes lost.

If the robot follows the landmarks in the direction of the incoming call,
it is guaranteed to proceed on a shortest topological path to the goal. If the
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calls are sent from two or more different nodes in the graph, the one closest to
the curren: position will reach it first, given uniform activation dissipation.

Since calls are emanated continuously, some method must be employed iz
order to disambiguate between previous calls from distant locations reaching
a node at the same time as more current calls from closer locations. This can
be accomplished by time-stamping each call and always choosing the newest
one.

8.2 Finding the Shortest Physical Path

Since spreading of activation is equivalent to graph search, the algorithm
produces the shortest topological path in time linear in the size of the graph.
However, the topological path is not necessarily the shortest known physical
path. To obtain the shortest path ir terms of physical distance, the notion
of time-as-distance is used. As the robot traverses the world, it builds up
confidences in certain landmarks. Confidences are thresholds which corre-
spond to time periods (assuming constant velocity). This length can be used
to estimate the size of each landmark.

Each landmark is detected continuously, and the number of consecutive
times the same landmark label is matched corresponds to its rough physical
size. For example, a corridor has an implicit length imposed by its detection
threshold. Assume the threshold for detecting a corridor takes m seconds.
Assuming continuous velocity v, the approximate length of a once-detected
corridor is mv feet. If some corridor is detected c times cousecuiively, it is
estimated to be about cmv feet long.

In the actual implementation, the length descriptor is represented in the
confidence units since they are equivalent to distance. Analogously, these
are also units oi time, so the map thus contains an implicit representation of
time as well.

The rough length estimate is stored in each node as an additional land-
mark descriptor. To compute the length of a path, the goal-call originating
from a node grows from unit length into an estimate of the path’s physical
length. Whenever the call reaches a node in the graph, its length is added to
its value. As the call is propagated along the wires, its size grows gradually.
When it reaches the node corresponding to the robot’s current position, its
value represents the length of the path it traversed.
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Depending on the fanout of the node, the robot can receive a number
of calls from different directions. The call with the smallest length estimate
corresponds to the direction on the physically shortest path. The direction
of the incoming shortest path is the direction the robot pursues. Since the
call-propagation process is continuous, the process of selecting the shortest
path is repeated at each node the robot traverses. A greedy choice at each
step guarantees the optimal solution. This can also be viewed as gradient
descent on path length at each node.

In addition to providing the path length, the value of the call serves as its
name as well, and distinguishes it from other incoming calls. This obviates
the need for time-stamps. The length is not a unique path identifier, however,
since two paths with equal length are indistinguishable. This issues does not
arise in a linear list, but does in the more general cyclic graph representation
described in chapter 10. However, it is .ot a problem since one is not more
optimal than the other. The algorithm uses a greedy strategy of always
choosing the shortest path, thus eliminating any circuitous routes resulting
from undistinguished calls.

If we view the path planning process as graph search, then topological
shortest path is a parallel search in a graph where all links have unit length.
Physical shortest path uses a graph with weighted edges where the weights
correspond to the length of each landmark on the path. In both cases we can
obtain the shortest path in O(n) where n is the number of landmarks in the
g